Parallel implementation of a unified approach to image focus and defocus analysis on the Parallel Virtual Machine
نویسندگان
چکیده
A uniied approach to image focus and defocus analysis (UFDA) was proposed recently for three-dimensional shape and focused image recovery of objects. One version of this approach which yields very accurate results is highly computationally intensive. In this paper we present a parallel implementation of this version of UFDA on the Parallel Virtual Machine (PVM). One of the most computationally intensive part of the UFDA approach is the estimation of image data that would be recorded by a camera for a given solution for 3D shape and focused image. This computational step has to be repeated once during each iteration of the optimization algorithm. Therefore this step has been sped up by using the Parallel Virtual Machine (PVM). PVM is a software package that allows a heterogeneous network of parallel and serial computers to appear as a single concurrent computational resource. In our experimental environment PVM is installed on two UNIX workstations communicating over Ethernet to exploit parallel processing capability. Experimental results showed that the communication overhead in this case was comparatively low. An average 1.93 speedup is gained by the parallel UFDA algorithm running on PVM platform compared to the execution time of sequential processing. This illustrates a practical application of PVM to 3D machine vision.
منابع مشابه
Forward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning
The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملA New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering
This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کامل